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With a coverage of 30% of the Earth’s land area, forest bi-
omes play an important role in global carbon (C) cycling 
and C management [1]. There are two main reasons for this. 
First, a huge amount of C is stored in forest live biomass, 
detritus, and soil organic matter; this accounts for 45% of 
the C storage in the global terrestrial ecosystem. Second, 
when forest ecosystems are destroyed or converted to other 
ecosystems, much of the C stored is released from the eco-
systems; this is an important source of atmospheric CO2. 
Therefore, research into forest biomass and productivity has 
gained considerable attention in recent decades. From the 
International Biological Program (IBP) in the 1960s [2] to 
the recent global reassessment of the C balance of ecosys-
tems [3], forest C cycling has long been a key issue. 

Recently, based on field measurements, three papers 
[46] in SCIENCE CHINA Life Sciences have focused on 
forest productivity and C storage of tropical rain forest, 
subtropical evergreen broad-leaved forest, temperate de-
ciduous broad-leaved forest, and temperate coniferous for-
est across East China. These studies provide solid data for 
the ongoing national carbon inventory campaign supported 
by the Strategic Priority Research Program of the Chinese 
Academy of Sciences, which was launched in 2011. 

Chen et al. [4] estimated biomass C densities and their 
changes from 1983 to 2005 in mountain tropical rainforests 
of Jianfengling in Hainan Island, based on monitoring data  

from forest permanent plots and biomass allometric rela-
tionships. Their results show that biomass ranges from 
397.1 to 502.4 t hm−2, with an average of 453 t hm−2, and 
accordingly the biomass carbon density ranges from 201.4 
to 254.9 t C hm−2, with an average of 230.8 t C hm−2. Dur-
ing 1983–2005, the mountain tropical rainforests in 
Jianfengling exhibited a C sink, and the average sink size 
was 0.56 t C hm−2 a−1. These results offer direct evidence 
that Chinese tropical forests represent a C sink. 

Yang et al. [5] first established biomass allometric mod-
els for component tree species in evergreen broad-leaved 
forest in Tiantong, Zhejiang Province, and from these mod-
els, the community biomass of Schima superb-Castanopsis 
carlesii forest was calculated. The results show that the 
mean total biomass of 52-year-old S. superb-C. carlesii for-
est is 225.3 t hm−2, equating to about 101.4 t C hm−2, with 
28.0% of the total biomass being stored underground.    
In their study, the biomass of subtropical evergreen 
broad-leaved forests in different regions of China is also 
compared. 

Zhang et al. [6] investigated the patterns of carbon den-
sity and carbon allocation in six typical temperate forests on 
Mt Maoer, Heilongjiang Province. These authors found that 
the total ecosystem carbon density varies from 186.9 to 
349.2 t C hm−2 over the six forest types. The C densities of 
vegetation, detritus, and soil account for 40%, 3%, and 57% 
of the total C densities, respectively. The root:shoot ratios 
range from 22.0% to 28.3% and small root (diameter <5 
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mm) biomass range from 0.95 to 3.24 t C hm−2. This is an-
other detailed case study on C cycling of temperate forest 
ecosystems following studies on Mt Dongling, Beijing [7]. 

Based on these results and related studies on forest C cy-
cling [7,8], it is possible to combine these data and show the 
variations of forest biomass with latitude in East China 
(Figure 1). Overall, tropical and subtropical forests have 
higher biomass than other forests, with a decreasing trend 
with latitude. However, the linear relationship is not simple, 
with large variations in tropical and subtropical regions. 
This indicates that the environmental parameters directly 
associated with latitude, such as temperature and precipita-
tion, have limited explanatory power for forest biomass. 
Consequently, the question arises as to what biotic and abi-
otic factors determine forest biomass. There is no easy an-

swer to this question.  
Generally, it is acknowledged that the determinants of 

community C input rate (i.e., primary production) are soil 
moisture, temperature and soil nutrient conditions. In the 
short term, the direct influencing factors are temperature, 
atmospheric CO2 concentration, leaf nitrogen content, leaf 
area index, and the length of growing season [9]. In the long 
term at the community successional scale, however, the 
final determinants are soil parent material, climate, topog-
raphy, biota and development time, namely, five relatively 
independent-state factors [10]. The biomass of a community 
is the net accumulation of the balance of C input and output 
in the background of long-term community succession, 
therefore is ultimately determined by the five independent- 
state factors. In the short term, community dynamics and  

 

 

Figure 1  Research sites in the special issue entitled “Carbon budget in East Asian ecosystems” (Vol. 53, 2010) in SCIENCE CHINA Life Sciences (A), and 
variations of forest biomass along the latitudinal gradient (B). JFL, Jianfengling, Hainan Island; TT, Tiantong, Zhejiang Province; MES, Mt Maoer, Hei- 

longjiang Province. 
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management are the important determinants.  
Interestingly, it was found recently that there is a good 

linear relationship between forest biomass and forest mean 
height. Based on a global database of forest biomass, Fang 
et al. [11] found that aboveground biomass is proportional 
to forest mean height in the closed forest (with the equation: 
biomass (in Mg hm2)=10.63×height (in m)), and concluded 
that aboveground biomass per forest spatial unit area was a 
fixed value. Theoretically, this finding expands the law of 
constant final yield of plant populations [12,13] to that of a 
forest community, and practically it is promising to develop 
a new method for large-scale forest biomass estimation. 
Recently, using a database of forest biomass and productiv-
ity in China, Hui et al. [14] further proved that forest height 
is better than diameter at breast height (DHB) for prediction 
of forest biomass and production. In grassland ecosystems, 
however, the relationship between community height and 
biomass seems to be more complex because community 
height is related to root:shoot ratio rather than community 
biomass or production [15]. 

For forest ecosystems, the patterns of C stocks have been 
addressed clearly, with a well-developed database of bio-
mass and intensive field sampling sites. However, it is still 
premature to develop C cycling models for most forest eco-
systems, which need long-term field monitoring to obtain 
not only data on C stocks, but also C fluxes among different 
pools. At present, measurement of C cycling faces two dif-
ficulties: (i) a large pool vs. small fluxes—it is very difficult 
to detect accurately the C changes and fluxes between pools 
in a short time; and (ii) the spatial heterogeneity—the vari-
ances among sampling plots are often larger than fluxes 
between C pools. Currently, some detailed C-cycling mod-
els have been developed for forest ecosystems, e.g., temper-
ate oak forest in Hubbard Brook, New Hampshire [16] and 
Pseudotsuga-Tsuga coniferous forest of Wind River Ex-
perimental Forest in Washington State, USA [17]. In con-
trast, we still lack a detailed and representative model of C 
cycling in China, although some very preliminary models 
exist [7]. 

As in other research disciplines, study of C cycling fol-
lows the development path from pattern to mechanism, 
which in this case is from C storage, to dynamics, then de-
tailed models. An important task of future research efforts is  

to establish reference sites for C cycling studies in zonal and 
typical forest ecosystems and forest plantations, to develop 
a detailed C-cycling model for each site, and finally to con-
struct a nationwide C-cycling reference-site system with 
which to calibrate the C models. With this knowledge, it is 
not a big step to achieve accurate assessment and prediction 
of ecosystem C cycling across China.  
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