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Abstract
Eyespot disease caused by the soil-borne facultative
fungi Oculimacula yallundae and O. acuformis is the
major component of the stem-base disease complex
of wheat in temperate regions of the world with a
cool and wet climate. In this review, we focus on
results of genetic studies concerning both partners of
the host–pathogen interaction. This comprises analy-
ses of genetic diversity of the pathogen and identifi-
cation of particular genes within it, evaluation and
screening methods for host resistance, resistance
sources and genetics of these resistances, breeding of
resistant cultivars in wheat, and application of
genetic markers in tagging and tracking of eyespot
resistance genes. We also attempt to foresee some of
the key issues and developments that may occur in
future. The identification of markers tightly linked to
eyespot resistance genes is the important research
focus opening the door to marker-assisted selection
of resistant varieties.

Introduction
Wheat production is limited by various abiotic and
biotic factors. It is influenced by a number of diseases,
mainly of pathogenic fungal origin. These can reduce
kernel yield and quality and cause dramatic yield
losses (King 1977; Fitt and Goulds 1988; Griffey et al.
1994; Marshall and Sutton 1995). Eyespot, caused by
the soil-borne facultative fungi Oculimacula yallundae
(Wallwork and Spooner) Crous and W. Gams [for-
merly Tapesia yallundae, anamorph Helgardia (for-
merly Pseudocercosporella) herpotrichoides] and
O. acuformis (Boerema, R. Pieters and Hamer) Crous
and W. Gams [formerly Tapesia acuformis, anamorph
Helgardia (Pseudocercosporella) acuformis], is a

component of the stem-base disease complex of wheat
(Lucas et al. 2000; Crous et al. 2003). Eyespot forms
lesions on the leaf sheaths and culms near the soil
level, and their elliptical shape gives rise to the name
of the disease which is also known as strawbreaker or
foot rot. Eyespot pathogens have a wide host range
among cereals and grass species (Lucas et al. 2000).
Wheat, barley, rye, oats and other related grasses can
be affected, with wheat being the most susceptible
(Murray et al. 1994; Chapman et al. 2008). Sexual
reproduction of O. yallundae can occur on some wild
grasses [e.g. Bromus diandrus, Hordeum leporinum
(Wallwork 1987) or Holcus lanatus (Dyer and Brad-
shaw 2002)], which may provide a reservoir of primary
inoculum to infect cultivated fields. Significant dam-
ages due to eyespot are observed on winter wheat and
fall-sown spring wheat in temperate regions of the
world with cool and wet climates where fall-sown cere-
als predominate (Lucas et al. 2000). Measures to con-
trol eyespot include cultural practices (sowing date and
density, tillage practice, crop rotation), chemicals (fun-
gicides) and biological control. The development of
wheat cultivars with genetic resistance is recognized as
the most effective, economic, environmental-friendly
and sustainable strategy to control the disease. Previ-
ous reviews mainly concerned epidemiology and man-
agement of eyespot (Fitt and Goulds 1988; Fitt et al.
1990) or the biology and genetics of Oculimacula spe-
cies (Lucas et al. 2000). Furthermore, eyespot was one
of the examples in reviews concerning sensory biology
of wheat pathogens (Lucas 2004), molecular mecha-
nisms of fungicide resistance (Ma and Michailides
2005) or coexistence of sister pathogen species in ara-
ble crops (Fitt et al. 2006). The current review focuses
on molecular genetic studies on the pathogen on one
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hand and on resistance to eyespot in host plants and
practical implications for wheat breeders on the other.

Molecular Genetic Studies of the Pathogens
As mentioned by Lucas et al. (2000), molecular genetic
studies of eyespot pathogens are practicable: they can
be cultivated on artificial media, they can be trans-
formed (Blakemore et al. 1989) to study complementa-
tion, to insert reporter genes (Bunkers 1991; Bowyer
et al. 2000; Eckert et al. 2005) or to obtain mutants,
and techniques allowing in vitro sexual crosses between
compatible strains were developed (Dyer et al. 1993).
However, few genes of Oculimacula sp. have been iden-
tified so far, with only 27 sequences in the NCBI
nucleotide database and nine in the protein database
(15 July 2010).

During the 1990s, several genetic marker systems
were used to study genetic diversity in eyespot patho-
gens. These were isozymes (Julian and Lucas 1990;
Priestley et al. 1992), restriction fragment length poly-
morphisms (RFLP) and other DNA-hybridization-
based marker systems (Nicholson et al. 1991, 1993;
Thomas et al. 1992; Frei and Wenzel 1993; Poupard
et al. 1995; Takeuchi and Kuninaga 1996), and ran-
dom amplified polymorphic DNAs [RAPDs, (Nichol-
son and Rezanoor 1994; Nicholson et al. 1994;
Papaikonomou and Lucas 1994; Vanova et al. 2000)].
These studies mainly targeted identification of molecu-
lar fragments enabling discrimination of the two Oculi-
macula species. They also showed that O. yallundae
had a higher degree of polymorphism than O. acufor-
mis. The competitive PCR assay developed by Nichol-
son et al. (1997) on the basis of specific RAPD
fragments was later used in several studies that evalu-
ated the effects of various factors, e.g. fungicide treat-
ments, cultivars with different eyespot susceptibilities,
soil management, farming practices or the preceding
crop, on the incidence and severity of stem-base dis-
eases of wheat (Bateman et al. 2000; Turner et al.
2001; Nicholson et al. 2002; Matusinsky et al. 2008a,b,
2009).

The rDNA genes were used to design PCR-based
tests to rapidly differentiate the two types of Oculimac-
ula isolates (Poupard et al. 1993; Gac et al. 1996) that
were not definitively known as separate species at that
time. These tests were used to study the development
of O. yallundae and O. acuformis in the field and to
evaluate the effect of a fungicide seed treatment (Gac
et al. 1999). Ray et al. (2004) used competitive PCR
assays designed on rDNA genes that enabled quantifi-
cation of O. yallundae, O. acuformis and other patho-
gens involved in stem-base diseases of wheat to study
the effectiveness of various fungicide treatments on dis-
ease index and yield. Similar assays were also used to
evaluate the effects of eyespot on stem strength, lod-
ging resistance and yield (Ray et al. 2006). The rDNA
genes of four isolates were sequenced by Stewart et al.
(1999), and these results lead Crous et al. (2003) to
define the specific genus name Oculimacula for the
fungi associated with eyespot in cereals. These

sequences were used to design a real-time PCR assay
to discriminate O. yallundae and O. acuformis from
other fungal species found on wheat and to quantify
the pathogens in wheat plants (Walsh et al. 2005). The
rDNA sequence of Helgardia anguioides obtained by
Stewart et al. (1999) enabled the identification of this
fungus within the wheat root microbial community
(Kwasna et al. 2010).
The two mating-type alleles of O. yallundae were

isolated by Singh et al. (1999). With these data, Dyer
et al. (2001) designed a multiplex PCR test for deter-
mining mating type in both O. yallundae and O. acu-
formis. Douhan et al. (2002a) used this test to analyse
Oculimacula populations found in the US Pacific
Northwest. These results and a complementary AFLP
analysis indicated that both species were represented
by random mating populations undergoing partial
asexual reproduction at the scale studied (Douhan
et al. 2002b, 2003).
The ornithine decarboxylase (ODC) gene was stud-

ied by Mueller et al. (2001) as a candidate gene
involved in polyamine metabolism, and that could be
critical during cell proliferation observed in the first
steps of the infection process. The ODC knockout
mutants obtained in this study were unable to differen-
tiate infection plaques in vitro but were not reduced in
virulence towards wheat when compared to a normal
strain. Consequently, the ODC gene was considered
not to be a suitable target for fungicides.
Two genes involved in fungicide resistance were also

studied. Mutations in the b-tubulin gene were associ-
ated with different phenotypes of benzimidazole resis-
tance (Albertini et al. 1999), whereas contradictory
results were obtained concerning the association of
mutations in the 14a-demethylase gene (CYP51) with
resistance to DMI (sterol 14a-demethylase inhibitor)
fungicides like prochloraz (Wood et al. 2001; Albertini
et al. 2003). Genetic analyses in sexual crosses between
isolates of O. yallundae with varying levels of prochlo-
raz resistance indicated that resistance is controlled by
a major gene and several minor genes (Dyer et al.
2000).

Methods for the Assessment of Eyespot Resistance
Various techniques for evaluating eyespot resistance in
wheat genotypes have been used by breeders. It was
early realized that controlled inoculations with the
pathogen would give a more reliable assessment of
eyespot resistance than natural infection because artifi-
cial inoculation is more uniform than the natural one.
Techniques were described for the production of inoc-
ulum and for inoculation in the field (Bruehl and Nel-
son 1964) or in growth chambers (Macer 1966). The
advantage of the growth chamber test was that it was
more rapid (2–3 months) than a field test, which
requires a quite complete growing season. The growth
chamber test measures mainly resistance to penetration
of the leaf sheaths, whereas the field test measures
mainly resistance of the stem to invasion by the
fungus. Because the two kind of resistance are not
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completely correlated, it should be better to measure
both (Doussinault 1973). In both tests, ratings are
based on an index: several plants (10–20 in growth
chamber tests and approximately 50 tillers in field
tests) are scored for number of penetrated leaf sheaths
(growth chamber tests) or the portion of the stem
attacked by the fungus (field tests), and their scores
are averaged to obtain the index. With such index
techniques, resistance evaluations are time-consuming
and labour-intensive (Johnson 1992b). They are also
difficult to apply to heterogeneous material such as
segregating families in early generations after crossing.
For heterogeneous populations, it was preferred to
select for yield or seed size in a naturally infested envi-
ronment or in inoculated trials (Doussinault 1973;
Roberts and Allan 1990). However, it soon appeared
that if the population was also heterogeneous for plant
height or earliness, this procedure tended to select tall
and vigorous plants and that the selection pressure on
eyespot resistance was not sufficient. Consequently,
it was proposed that selection for yield in inoculated
trials should be delayed until attainment of near-
homozygosity by single-seed descent (Roberts and
Allan 1990) or should be applied after classifying
plants on height (Doussinault 1973).

Several variations of the growth chamber test were
proposed to reduce its duration. For example, Murray
and Ye (1986) observed that papillae formation, hyper-
sensitive reaction at papillae sites and number of suc-
cessful penetrations were correlated with host
resistance, and Strausbaugh and Murray (1989) used
the percentage of successful penetrations in the first
leaf sheath at 50 infection sites to study the inheritance
of eyespot resistance in segregating F2 and backcross
populations. This method allowed assessment 4 weeks
after inoculation but remained time-consuming and
quite subjective.

An improved method using a b-glucuronidase
(GUS)-transformed strain of the pathogen was devel-
oped to measure differences in disease development on
4- to 8-week-old wheat seedlings (de la Peña and
Murray 1994). This method differentiated highly resis-
tant, resistant and susceptible genotypes (Jones et al.
1995). After inoculation with the GUS-transformed
strain, production of the GUS enzyme is highly corre-
lated with the amount of fungal growth in the plant.
Thus, disease severity or differences in resistance to eye-
spot are directly related to the amount or differences in
GUS activity in seedling tissues of wheat genotypes.
The results of this seedling test are highly correlated
with visual ratings made on 6- to 8-week-old young
plants and were considered to be sufficient to predict
adult plant resistance under Pacific Northwest condi-
tions. Using this method, evaluation of resistance could
be reduced from approximately 11 to 2 months (Jones
et al. 1995). The GUS seedling test has been used to
identify new sources of eyespot resistance in wild rela-
tives of wheat, to determine the genetic control of resis-
tance and to facilitate mapping and tagging of eyespot
resistance genes (Murray et al. 1994; Yildirim et al.

1995, 1998; de la Peña et al. 1996, 1997; Cadle et al.
1997; Figliuolo et al. 1998; Lucas et al. 2000; Li et al.
2004, 2005). With only one GUS-transformed strain
used for resistance testing, there was a risk of selecting
specific resistance genes conferring resistance to only a
limited portion of the pathogen populations. That is
probably why Li et al. (2004) used a mixture of four
GUS-transformed strains in their study.

Lind (1992) developed a method based on an
enzyme-linked immunosorbent assay (ELISA) to mea-
sure quantitative differences in eyespot resistance
between wheat cultivars. This method detected the fun-
gus in presymptomatic wheat plants and could be
applied at different growth stages, but only measure-
ments taken at or after anthesis correlated well with
response at the adult stage (Lind 1992), whereas mea-
surements taken at younger growth stages, particularly
around tillering, were not able to discriminate resistant
from highly resistant genotypes (de la Peña and
Murray 1994). The method was applied to study the
stability of eyespot response measured by ELISA in 20
wheat cultivars studied in six environments (Lind et al.
1994), relative rates of O. yallundae and O. acuformis
development in wheat (Poupard et al. 1994), variation
in eyespot response in Pch1-carrying genotypes (Lind
1999) and quantitative inheritance of eyespot resistance
in diallel crosses (Lind 2000).

The competitive PCR assay developed by Nicholson
et al. (1997) was rarely used by wheat breeders or
geneticists, probably for cost reasons and because it is
time-consuming. Uslu et al. (1998) observed that Ocu-
limacula DNA quantification by competitive PCR did
not correlate well with visual ratings and was not pow-
erful in revealing small differences between genotypes,
probably because the method evaluates the level of
colonization rather than penetration and had to be
applied on bulks of individual plants that had different
visual disease scores. More recently, real-time PCR
was demonstrated to be useful in discriminating and
quantifying O. yallundae and O. acuformis in plants
(Walsh et al. 2005). In the context of wheat genotype
evaluation, assays based on this technique were devel-
oped by Meyer et al. (2006, 2008) and by Gedye and
Murray [unpublished work cited by Li et al. (2008)].

None of these tests is simple and highly effective; all
still need inoculation with pathogens, and replicated
testing is necessary owing to environmental variation
and genotype-by-environment interaction.

Sources of Eyespot Resistance and Resistance
Genes Found in Relative Species of Wheat
There are several known sources of resistance to eye-
spot, but only three resistance genes have been
described. The French cultivar �Cappelle-Desprez�
reported by Vincent et al. (1952) was the first commer-
cial wheat cultivar resistant to eyespot. Most of its
resistance is conferred by Pch2 which is located at the
distal end of the long arm of chromosome 7A and acts
at the seedling or young plant stage (Law et al. 1975;
Koebner and Martin 1990; de la Peña et al. 1996,
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1997; Chapman et al. 2008). Other genes on chromo-
somes 1A, 2B and 5D of �Cappelle-Desprez� modify
the levels of infection at the young plant stage (Law
et al. 1975). Pch2 can also be analysed as a quantita-
tive trait when its effect does not permit plants to be
clearly classified into resistant and susceptible types
(Hollins et al. 1988; Chapman et al. 2008). Recently,
Pch2 was found to confer a significantly less effective
resistance against O. yallundae than against O. acufor-
mis at the young plant stage (Burt et al. 2010). In
another study, chromosomes 5A, 1A and 2B were
shown to carry genes for resistance against O. yallun-
dae at the adult stage, whereas Pch2 did not have an
effect (Muranty et al. 2002). Although the pedigree of
�Cappelle-Desprez� is known, the origin of Pch2 and
other eyespot resistance genes in �Cappelle-Desprez� is
not known (Murray et al. 1994). The origin of Pch2
could be in an A-genome species like Triticum mono-
coccum, as suggested by Cadle et al. (1997). �Cappelle-
Desprez� was selected in an environment with a long
history of exposure to the disease where selection for
resistance was probably performed without much
effort (Law et al. 1975). In the UK during the 1960s
and 1970s, selection for the resistance carried by
�Cappelle-Desprez� was usually achieved by breeding
within a pool of varieties derived from �Cappelle-Des-
prez� and thought to be homozygous for resistance
(Law et al. 1988).

A few other wheat cultivars were reported to show
moderate resistance to eyespot apparently not inher-
ited from �Cappelle-Desprez�. These are for example
�Kanzler�, �Florida� and �Kraka� from Germany (Lind
et al. 1994), �Cerco� (Peterson et al. 1974), and �Edwin�
(Jones et al. 2000) developed in the Pacific Northwest.
The genetic control of eyespot resistance in these culti-
vars has not been studied.

Some cultivars are also sometimes rated moderately
resistant and sometimes susceptible: for example, �Ste-
phens� (Kronstad et al. 1978) and �Viking� [mentioned
as moderately resistant by Murray and Ye (1986) and
Murray and Bruehl (1986) and as susceptible by
Strausbaugh and Murray (1989) and Murray and
Bruehl (1983)]. This illustrates the high geno-
type · environment interaction that confuses pheno-
typic test results or possibly unreliability of the assays.

The most effective resistance is due to the single major
gene Pch1, which was transferred to wheat from Aegi-
lops ventricosa in three independent programmes. Pch1
was transferred to hexaploid wheat by first crossing
Ae. ventricosa (2n = 4· = 28, genome DVDVMVMV)
with an accession of the tetraploid species Triticum
persicum (2n = 4· = 28, genome AABB) to obtain a
fertile amphidiploid and subsequently backcrossing
with the hexaploid wheat (2n = 6· = 42, genomes
AABBDD) variety �Marne-Desprez� for three gene-
rations to develop Ventricosa · Persicum · Marne
(=VPM-1) (Simonet 1957; Maia 1967). Pch1 was
transferred to the distal part of chromosome arm 7DL
of wheat via recombination between the 7Dv chromo-
some of Ae. ventricosa and the 7D chromosome of a

susceptible wheat (Gale et al. 1984; Chao et al. 1989).
VPM-1 became a ready source of the eyespot resis-
tance gene Pch1 for wheat breeders. Genetic material
from Ae. ventricosa was also transferred to hexaploid
wheat via an intermediate male-sterile hybrid between
T. turgidum (2n = 4· = 28, genomes AABB) and
Ae. ventricosa that was backcrossed as female parent
with hexaploid wheat. The progeny were then repeat-
edly selfed to obtain stable wheat lines with 42 chro-
mosomes, designated H-93 lines (Doussinault et al.
1983a). The resistance factor in line H-93-70 was con-
firmed to be allelic to the Pch1 gene of VPM-1 and to
be transferred from chromosome 7DV of Ae. ventricosa
to chromosome 7D (Delibes et al. 1988; Worland et al.
1988; Mena et al. 1992). In the third programme, eye-
spot resistance from Ae. ventricosa was transferred to
bread wheat by a direct cross. A hybrid between
T. aestivum �Moisson� and Ae. ventricosa was open-pol-
linated with an unidentified T. aestivum plant, and a
resulting hybrid was backcrossed with T. aestivum
�Courtot�, followed by a further cross with T. aestivum
�Moisson�. The resulting plants were selfed to establish
pure lines (Doussinault et al. 1988). These lines, known
as F-210, were shown to have a very high resistance
level (Lind 1999).
Eyespot-resistant accessions were identified with a

GUS-transformed strain of O. yallundae in Triticum
tauschii (Yildirim et al. 1995), T. monococcum (Cadle
et al. 1997), T. durum, T. dicoccoides and T. turanicum
(Figliuolo et al. 1998), Dasypyrum villosum (Yildirim
et al. 2000), Thinopyrum ponticum and Th. intermedium
(Li et al. 2004, 2005), and Aegilops longissima (Sheng
and Murray 2009). Immune and highly resistant
accessions were also identified in T. tauschii with a
non-transformed strain (Assefa and Fehrmann 1998).
Hundreds of accessions of T. tauschii were screened
and shown to carry a high frequency of resistance
(Jones et al. 1995; Yildirim et al. 1995). Crosses
between resistant and susceptible T. tauschii accessions
indicated that a single gene controlled eyespot resis-
tance in each cross, and tests with molecular markers
showed that this gene is probably not allelic to Pch1
(Cadle et al. 1998), but the chromosome location of a
resistance gene in T. tauschii is still unknown. Sheng
and Murray (2009) identified eyespot-resistant A. lon-
gissima accessions and initiated genetic analyses of eye-
spot resistance with molecular markers in crosses
between resistant and susceptible accessions. Among
22 T. monococcum accessions, a dozen were shown to
have an intermediate to high level of eyespot resis-
tance, and four of these had significantly different
responses to O. yallundae and O. acuformis (Burt et al.
2010).
A part of the Gatersleben genetic resource collection

was tested for eyespot resistance, mainly under natural
disease pressure but also with artificial inoculations
(Boerner et al. 2006). A quite high number of acces-
sions of the Triticum genus (46 at the seedling stage,
412 at the adult stage) were scored with no visible
infection under natural infection, and more than half
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the Aegilops accessions had no visible infection under
natural infection. These putatively highly eyespot-
resistant accessions deserve further investigation using
artificial inoculations.

High levels of resistance reported by Sprague (1936)
in D. villosum (L.) Candargy (2n = 14, genome VV), a
distant relative of wheat, were confirmed by Murray
et al. (1994) who also showed that a chromosome 4V
addition line in a �Chinese Spring� background was as
resistant as VPM-1. In a cross between the susceptible
�Yangmai-5� (4V(4D)) substitution line and the resis-
tant 4V disomic addition line, the resistance gene
PchDv (Pch3) from D. villosum was located on the dis-
tal part of the long arm of chromosome 4V (Yildirim
et al. 1998). Although five tested accessions of D. villo-
sum were resistant to both O. yallundae and O. acufor-
mis, analysis of single chromosome addition lines in a
�Chinese Spring� background showed that resistance to
the two eyespot pathogens may be conferred by differ-
ent genes (Uslu et al. 1998).

The wheatgrasses Th. ponticum and Th. intermedium
were reported as potential sources of resistance to
eyespot that could be used in perennial wheat
(= Triticum spp. · Th. ponticum or Th. elongatum)
breeding (Cox et al. 2002), whereas an eyespot tolerant
germplasm line with Th. ponticum in its pedigree was
registered by Allan et al. (1993). Genetic analyses of a
chromosome substitution line in which chromosome
4D was replaced by chromosome 4J of Th. ponticum
indicated that eyespot resistance in offspring of this line
was associated with the 4J chromosome (Li et al.
2004). A related study with chromosome substitution
or translocation lines incorporating Th. intermedium
chromosomes or chromosome arms indicated that
eyespot resistance is associated with the short arm of
chromosome 4Ai#2 (= 4JS) (Li et al. 2005). These
resistance sources require further chromosomal engi-
neering to remove deleterious factors introduced with
the alien chromatin (Li et al. 2008).

Aegilops kotschyi (2n = 28, genome UUSvSv) was
described as a further source of resistance to eyespot
pathogens [Bang (1986), cited in Lind (2000)] and was
used to develop introgression lines in a wheat back-
ground by crossing and twice backcrossing with three
German wheat varieties, followed by selfing for line
development (Thiele et al. 2002). Among these lines,
several were as resistant as �Cappelle-Desprez� but
none were as resistant as Pch1-carrying controls. The
genetic basis of this resistance was studied by Meyer
et al. (2008) in a doubled haploid population, and it
seemed to be of more minor effect than previously
thought and due to several minor genes.

Development of Eyespot-Resistant Cultivars
Variable emphasis has been placed on eyespot resis-
tance in different breeding programmes around the
world during the last 60 years. When fungicides were
not used, selection of wheat in Western Europe
occurred in environments largely attacked by the
disease and selection for resistance went along with

selection for yield (Law et al. 1975). When breeders
began to use fungicides in yield trials, nowadays cur-
rent practice, they had to perform separate tests to
select for eyespot resistance.

The cultivar �Cappelle-Desprez� and the gene Pch1
from the breeding line �VPM-1� are the most widely
used sources of resistance to eyespot. Examples of
cultivars that are thought to have inherited �Cappelle-
Desprez� resistance are �Hobbit sib� (Worland et al.
1988), �Avalon�, �Longbow�, �Norman�, �Virtue� (Hollins
et al. 1988), �Maris Huntsman� (Johnson 1992b), �Apo-
llo�, �Sperber�, �Boxer�, �Sorbas�, �Rektor� (Lind et al.
1994), �Joss�, �Maris Beacon�, �Xanthos� and �Adular�
(Lind 2000). The presence of Pch2 was confirmed or
inferred from molecular genotyping results in �Hobbit
sib�, �Lynx�, �Rendezvous� and �Riband� (Burt et al.
2010).

Of the three described resistance genes, Pch1 is the
most extensively used in the development of eyespot-
resistant wheat cultivars due to its tight linkage with
an isozyme marker (McMillin et al. 1986). However,
as early as the 1970s, Doussinault et al. (1974) started
to breed new wheat lines with a VPM parent, selecting
for eyespot resistance at the young plant and adult
stages and for other agronomic traits like earliness,
height, yield and quality. These efforts led to the regis-
tration of the French cultivar �Roazon�, which was the
first commercial wheat to contain the eyespot resis-
tance gene Pch1 of VPM-1. The two other sources
where Pch1 was introduced, i.e. the H-93 lines (Delibes
and Garcia-Olmedo 1973; Mena et al. 1992) and the
F-210 lines (Doussinault et al. 1988; Lind 1999), have
not been reported as sources of eyespot resistance in
wheat cultivars. This is perhaps due to the fact that
the Ae. ventricosa accession used to develop these lines
was different from the accession used to obtain VPM,
and the associated allele at the linked isozyme locus is
a null allele in these sources (Huguet-Robert et al.
2001; J. Jahier, personal communication). The French
cultivar �Roazon� was never widely grown (Jones et al.
1995).

The USDA-ARS winter wheat breeding programme
at Washington State University started to work with
Pch1-carrying lines in 1974. The first lines combining
high yield potential, adequate cold hardiness, good
milling quality and eyespot resistance conferred by
Pch1 were released as �Madsen� (Allan et al. 1989) and
�Hyak� (Allan et al. 1990) and were derived from
VPM ⁄Moisson selections. Further varieties with Pch1
were developed for the Pacific Northwest and several
other regions around the world (Table 1).

Genetic Markers of Eyespot Resistance Genes
It has long been recognized that markers that could be
used to indirectly select resistant individuals and
manipulate eyespot resistance genes would greatly
facilitate breeding. Several markers linked with the
three described eyespot-resistant genes (Pch1, Pch2
and Pch3) have been published, and these results are
summarized in Table 2.
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Table 1
Wheat germplasm containing Pch1 resistance against eyespot

Name of line
Registration

year Pedigree

Alcazara 2004
Allistera 2003
Andanteb 1992 Moulin ⁄D-172-6-4
Arbona 1990 Maris Huntsman ⁄US-363
Astucea 2004
Attlassa 2005
Audacea 1995 (VM1347 · VM480.18) · VM480.4
Azimuta 2004
Balthazara 1995 Faucon ⁄Rendezvous
Beamerc

Billd 1998
Brandte

Caraf 2006 WA7752 ⁄ ⁄WA6581 ⁄WA7217
Cardosa,g 2000 Cappelle-Desprez ⁄ ⁄Taras ⁄Hadmerslebener-230-60
Certoh,g

Cetusg,i 2005
Chukarj,k 2003 WA7665 ⁄Rulo
Codaj,l Tres ⁄ ⁄Madsen ⁄Tres
Eclipsea 1999
Ecua 1988 L-1035 ⁄L-1474 ⁄ ⁄Moisson
Farandolea 1999 VM713 ⁄CF1851 ⁄ ⁄CF1616 ⁄Renan
Finchj 2003 Dusty ⁄ ⁄Wa7164 ⁄Dusty
Flèchedora 1992 VPM ⁄Moisson ⁄ ⁄US-60-43 ⁄ 3 ⁄Prieur-61 ⁄ 4 ⁄Fidel

VPM ⁄Moisson ⁄ ⁄US-60-43 ⁄ 3 ⁄Prieur ⁄ 4 ⁄Fidel
Formatg 2007
FR-50j VPM-1 ⁄McCall
Grisbya 2002 Wild emmer ⁄Obelisk ⁄Taurus
Hermanng,m 2004
Hyakn 1989 VPM-1 ⁄Moisson 421 ⁄ ⁄ 2*Tyee
Hybnos-1h 1999
Intensea 2001
Krisd 1997
Leifferd,g 2004
Limesg 2002
Lonee 1992
Lynxe 1992 Sleipner ⁄Rendezvous
Madsenn 1988 VPM-1 ⁄Moisson 951 ⁄ 2*Hill 81
Managerg 2006
Mitchela 2001
Mobilo 1991 Kronjuwel ⁄Roazon
Mohlerc

Oratorioa 1995 H-84290 ⁄Genial
Osminh 2004
Pactolea 1986 Top ⁄VPM-71
Pikog,h 1994 CWW-3319.5 ⁄ 3 ⁄Kraka ⁄ ⁄Maris Huntsman ⁄Fruhgold
PR22R28a 2001
Ralfa 1997 Cario ⁄Tadorna ⁄ ⁄ Ibis ⁄Ferto ⁄ 3 ⁄Burma ⁄ 4 ⁄Rendezvous
RE8714a (Aegilops squarrosa no. 33 ⁄ Triticum dicoccum no. 119) ⁄ ⁄ (VPM ⁄Moisson) ⁄Beauchamp
RE9001a (80MH3 ⁄R3.7) ⁄ ⁄ (R3.7 ⁄ 74RHD8.4)
Regaina 1995 R-3-7 ⁄Bounty ⁄ ⁄Adam ⁄ 3 ⁄R-3-7 ⁄Bounty ⁄ ⁄Darius
Renana 1989 (Mironovskaia · Maris Huntsman) · [(VPM · Moisson) · Courtot]
Rendezvousa (VPM · Hobbit) · Virtue
Ressora 2004 RE9001 ⁄ 82RmultiHD10
Roazona 1978 VPM-1-1-1-2-R-4 ⁄Moisson
Ruloj 1994 Tyee ⁄ ⁄Roason ⁄Tres
Rumbaa 2000 (Fresco ⁄R3-7) ⁄ ⁄ (CWW3547 ⁄ 46 ⁄Florin)
Sankaraa 2004
Simonj Haven ⁄Lambert ⁄ ⁄Madsen
Sinopea 2003
Strikerg 2004
Templej 1997 Tres ⁄VPM-1
Titlisa 2005
Tubbsj 2004 Madsen ⁄Malcolm
Türkisg,h 2004
Virtuosea 1998 VM713 ⁄CF1851 ⁄ ⁄CF1616 ⁄Renan
Voltigea 2002 Soissons ⁄VM802 ⁄ ⁄C1723 ⁄C7128
VPM-1a (Ae. ventricosa 10 · T. persicum) · Marne3

VPM-1 ⁄Moisson 421n 1974 VPM-1 ⁄Moisson
VPM-1 ⁄Moisson 951n 1974 VPM-1 ⁄Moisson
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The endopeptidase allele Ep-D1b derived from the
long arm of chromosome 7DV of Ae. ventricosa like
Pch1 provides a particularly efficient marker for the
presence of Pch1 and is widely used for classification
and selection of resistant breeding lines (McMillin et al.
1986; Vahl et al. 1987; Koebner et al. 1988; Law et al.
1988; Summers et al. 1988; Worland et al. 1988; Vahl
and Müller 1991; Mena et al. 1992; Santra et al. 2006).
The other tightly linked markers are a RFLP marker
Xpsr121 (Chao et al. 1989), whose probe was found to
encode a beta-glucanase, the dominant simple sequence
repeat (SSR) markers Xbarc97, Xwmc14 and Xcfd175,
failing to amplify an Ae. ventricosa allele, which are suit-
able only for screening homozygous materials and can-
not detect failed reactions (Chapman et al. 2008), a
dominant sequence-tagged site (STS) marker XB-glu7D
derived from a 7D beta-glucanase expressed sequence
tag (EST) (Chapman et al. 2008), and three STS mark-
ers Xorw1, Xorw5 and Xorw6 (Leonard et al. 2008).

Several markers loosely linked to Pch2 were identi-
fied in the 1990s: these were an isozyme marker Ep-A1
(Koebner and Martin 1990) and the RFLP markers
Xpsr121 (de la Peña et al. 1996), Xcdo347 and Xwg380
(de la Peña et al. 1997). More recently, the first associ-
ation of Pch2 with PCR-based markers was reported
(Chapman et al. 2008). In this study, Pch2 was shown
to be associated with three SSR markers and to map
close to Xwmc525 within a 7-cM interval flanked by
Xwmc346 and Xcfa2040 (Chapman et al. 2008). Mark-
ers for Pch2 were also developed from cDNA-AFLP
fragments differentially expressed between �Chinese
Spring� and �Chinese Spring (Cappelle-Desprez 7A)�:
two markers, X4CD7A8 and X33CD7A8, were mapped
in the same terminal deletion bin of chromosome arm

7AL (7AL15-0.99-1.00) as Xcfa2040 but could not be
mapped in the �Chinese Spring (Cappelle-Desprez
7A)� · �Chinese Spring� population due to a lack of
polymorphism (Chapman et al. 2009). Finally, five
AFLP markers were significantly associated with eye-
spot resistance in a double haploid (DH) population
segregating for Pch2 (Meyer et al. 2008).

Restriction fragment length polymorphisms markers
Xcdo949 and Xbcd588 bracket the gene Pch3 on chro-
mosome 4V in a wheat background in a 33-cM inter-
val, and simultaneous selection for both flanking
markers would theoretically select 96.7% of the geno-
types having Pch3 (Yildirim et al. 1998).

Durability of Eyespot Resistance Genes
The possibility of pathogenic specialization in O. yal-
lundae and O. acuformis is a question that has not
been studied in depth. Old studies on this subject were
all published before the identification of the two Oculi-
macula species, and host-specific pathogenicity was
often analysed in relation to different species at the
same time as in relation to different cultivars. Evalua-
tion of response specificity demands tests of several
genotypes with several isolates and assessments of the
statistical interaction between isolates and genotypes
while avoiding the confounding direct and interacting
effects of environment. Scott and Hollins (1977)
reported such a study and concluded that geno-
type · isolate · environment was much larger than
genotype · isolate interaction, which means that differ-
ential responses of cultivars to isolates were not
repeatable over experiments.

Resistant wheat cultivars derived from the French
cultivar �Cappelle-Desprez� dominated European wheat

Table 1
Continued

Name of line
Registration

year Pedigree

WA 7217j,p VPM ⁄Moisson-951 ⁄ ⁄ 2*Barbee
WA 7621j VPM ⁄Moisson 421 ⁄ 2 ⁄VH 66354 ⁄WA 5827 ⁄WA 6241 ⁄ 3 ⁄Tres
WA 7625j VPM-1 ⁄Moisson 951 ⁄ ⁄ 2*Hill 81
WA 7666j,p VPM ⁄Moisson 951 ⁄ ⁄CI 13438
WA 7671j VPM-1 ⁄Moisson 421 ⁄ ⁄VH-66354 ⁄WA 5827 ⁄WA 6241 ⁄ 3 ⁄ 2*Hill 81
WA 7690j VPM-1 ⁄Moisson 951 ⁄ ⁄Yamhill ⁄Hyslop ⁄Hill 81 ⁄ 3 ⁄WA 6910
Weatherfordj 2001 Malcolm ⁄ 3 ⁄VPM ⁄Moisson 951 ⁄ ⁄Hill ⁄ 4 ⁄VPM ⁄Moisson 951 ⁄ ⁄ 2*Hill
Zobelg 2006

aAccession lists from INRA, France (H. Muranty, unpublished data).
bBurt et al. (2010).
cAccession list in Santra et al. (2006).
dLiatukas and Ruzgas (2008).
eBorum (2001).
fhttp://www.ars-grin.gov/npgs/acc/acc_queries.html.
gMeyer et al. (2010).
hThiele et al. (2002).
iWheat Pedigree and identified alleles of genes on line http://genbank.vurv.cz/wheat/pedigree/default.htm.
jAccession lists from the US department of agriculture (Leonard et al. 2008).
kCampbell et al. (2005).
lAllan et al. (2000).
mMeyer et al. (2008).
nAccession lists from Jones et al. (1995).
oAccession list in Lind (1999).
pAllan et al. (1993).
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markets for two decades from 1953 (Hollins et al.
1988). Their resistance remained effective during pro-
longed and widespread use and can be recorded as
durable (Gale et al. 1984; Law et al. 1988; Johnson
1992a).

Few and contradictory results were reported regard-
ing durability of resistance conferred by Pch1:
increases in yield loss of �Madsen� relative to suscepti-
ble cultivars were observed over a 12-year period in
eyespot field evaluation tests in the Pacific Northwest,
where two cultivars carrying Pch1, �Madsen� and
�Hyak�, were grown over 500 000 ha (Jones et al.
1995), whereas no isolate of the pathogen obtained
from France was found virulent on Pch1-carrying
genotypes (Saur and Cavelier 1995; J. Jahier, personal
communication), but Pch1-carrying cultivars were not
widely grown in France until recently.

Differential response to the two Oculimacula species
is a related subject more often discussed in recent pub-
lications. Poupard et al. (1994) showed that cultivars
with Pch1 (�Roazon� and �Rendezvous�) carried much
less O. acuformis material as measured by ELISA than
O. yallundae material, in the same experimental field
and the same environmental conditions where plants
had been inoculated separately with isolates of the two
species. In this experiment, susceptible and moderately
resistant cultivars had similar ELISA values with the
two species. On the contrary, Pch1 was found to be
highly effective against both species, whereas Pch2 was
significantly less effective against O. yallundae than
O. acuformis (Burt et al. 2010). While studying the eye-
spot resistance found in D. villosum, Uslu et al. (1998)
observed that resistance to the two pathogen species
could be conferred by different genes. Similarly, Sheng

Table 2
Genes for resistance to eyespot mapped using genetic markers

Linked
genes

Marker
name

Marker
type Marker interval Population structure References

Pch1 Ep-Db1 Isozyme Tight linkage 30 F5 lines �VPM ⁄Moisson
421� ⁄ ⁄ �Selection 101�

689 resistant lines

McMillin et al. (1986)

Summers et al. (1988)
Xpsr121 RFLP Tight linkage 68 RSL HS(VPM-7D) ⁄HS Chao et al. (1989)
Xust2001-7DL SSR 3 cM away from Pch1 38 breeding lines Santra et al. (2006)
XW7Dest SSR 6 cM away from Pch1 90 BC5 lines HS(VPM-7D) ⁄HS Chapman et al. (2008)
Xgwm428 SSR 8 cM away from Xwmc14
XB-glu7D EST Tight linkage
Xwmc273 SSR Loose linkage

(between 9.4 and
7 cM from Pch1)

254 RIL6 (Coda·Brundage),
germplasm survey of 44 lines

94 RILs of ITMI population
(W7984 · Opata85)

Leonard et al. (2008)

Chapman et al. (2008)
Xcfa2040 SSR
Xwmc634 SSR
Xgwm37 SSR
Xwmc14 SSR Tight linkage
Xbarc97 SSR
Xcfd175 SSR
Xorw5 STS Tight linkage 254 RIL6 (Coda · Brundage),

germplasm survey of 44 lines;
23 DH lines �293� (Pch1) · �St906�
(susceptible), 24 DH lines �359�
(Pch1) · �St906� (susceptible) and
80 DH lines �Chevalier�
(susceptible) · WW3640 (Pch1)

Leonard et al. (2008)

Meyer et al. (2010)
Xorw1 STS
Xorw6 STS

K110 AFLP Loose linkage
(2.1 and 4.3 cM
from Pch1)

DH populations segregating
for Pch

Meyer et al. (2008)
SSR03 SSR

K210 AFLP Tight linkage
Xust2001-7DL SSR
SSR01 SSR
SSR02 SSR
SSR08 SSR
Xorw6 STS
Xorw5 STS

Pch2 Ep-A1b Isozyme 15% recombined with Pch2 80 RSL CS(CD7A) ⁄CS de la Peña et al. (1996)
Xpsr121 RFLP 3.8% recombined with Ep-A1b
Xcdo347 RFLP 11 cM distal to Pch2 102 RSL CS(CD7A) ⁄CS de la Peña et al. (1997)
Xwg380 RFLP 18.8 cM proximal to Pch2
Xwmc525 SSR Xwmc525 Linked with Pch2 in

7 cM interval, flanked by
Xwmc346 and Xcfa2040

192 F2 CS(CD7A) ⁄CS Chapman et al. (2008)
Xwmc346 SSR
Xcfa2040 SSR
Five fragments AFLP Unknown DH population segregating

for Pch2
Meyer et al. (2008)

Pch3 Xcdo949 RFLP The two markers bracket
the Pch3 in a 33 cM interval

82 F2 [Yangmai-5(4V(4D)) ·
a disomic addition line (CS + 4V)]

Yildirim et al. (1998)
Xbcd588 RFLP

RSL, single chromosome recombinant lines; RIL, recombinant inbred lines; RFLP, restriction fragment length polymorphisms; DH, double
haploid; SSR, simple sequence repeat; STS, sequence-tagged site.
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and Murray (2009) observed that 20% of the A. lon-
gissima lines they tested responded differently to the
two species, and Burt et al. (2010) identified four
T. monococcum lines that responded differently to the
two species.

Pathogenic specialization seems to exist in interac-
tions between Oculimacula and wheat relatives. In
T. tauschii, a differential response was repeatedly
observed with two lines and several isolates in three
European laboratories (Scott et al. 1976). Similarly, a
differential response was observed in triticale (· Tri-
cosecale) when challenged with O. acuformis isolates
(M. Trottet, personal communication).

Problems and Future Prospects
Quite a few problems and significant new perspectives
on eyespot of wheat have been provided by the
research findings over many years. The fact that eye-
spot can be caused by two different species, O. yallun-
dae and O. acuformis (Lucas et al. 2000; Crous et al.
2003), and that both have the ability to adapt to selec-
tion pressures (King and Griffin 1985; Murray 1996;
Leroux and Gredt 1997) has important implications
for disease management. Disease monitoring, chemical
control and plant breeding will depend on a clear
understanding of pathogenic specialization, genetics
and population biology of the pathogen species (Dyer
and Lucas 1995; Dyer et al. 2000; Bateman and
Jenkyn 2001).

Alternative cultural practices, such as cultivar mix-
tures, induced resistance and biocontrol, deserve fur-
ther research in regard eyespot management. Mixtures
of resistant and susceptible cultivars seem to be able to
reduce lodging significantly under severe eyespot
attacks, even if symptoms are not reduced (Mundt
2002). This effect is likely due to resistant cultivars
physically supporting susceptible cultivars. The endo-
phyte Piriformospora indica, a Basidiomycota originat-
ing from the Thar desert of Rajasthan, India, was
shown to colonize wheat roots and to have a signifi-
cant reducing effect on eyespot symptoms (Serfling
et al. 2007). It is not clear whether this effect is a result
of host defence induction (systemic acquired resistance
or priming) or an increased plant growth rate that
helps the host to produce a leaf sheath faster than the
pathogen goes through them. However, P. indica was
apparently not able to restrict leaf pathogens in the
field, raising doubts about its applicability for wheat
production. Finally, the resistance inducer Benzo
(1,2,3) thiadiazole-7-carbothioic acid S-methylester had
no effect against eyespot disease in a field experiment
that aimed primarily to evaluate its effects on foliar
diseases and grain yield of winter wheat (Stadnik and
Buchenauer 1999).

Molecular genetic studies of the eyespot pathogens
are practicable and could be applied to identify factors
determining fungicide resistance, pathogenicity and
host specificity, to understand pathogen reproduction
and to reveal the mechanism of the infection process.
Such studies could ultimately enable the design of

novel chemical compounds to interfere with key steps
in the infection processes or spore production and
hence prevent pathogen dispersal. However, very few
results in these research areas were published in the
last 10 years, and genomic studies do not seem to be
underway for the eyespot pathogens.

Field evaluations and seedling tests in greenhouses
or growth chambers based on visual scores are time-
and resource-consuming, labour-intensive and some-
times inaccurate, because the pathogen grows slowly
in planta and damage to plants is difficult to assess
because it is not restricted to the plant surface. Addi-
tionally, the test requires substantial replication to
obtain reliable results, owing to a significant degree of
non-genetic interference and is seldom effective when
applied to single plant selection (Koebner and Sum-
mers 2003). Moreover, young plant and adult plant
responses to eyespot are only partially correlated.
Finally, field tests are quite slow, taking up to
11 months. As a consequence, if phenotypic tests are
useful to discover and map resistance genes, breeders
need genetic markers for these resistance genes in
order to manipulate them efficiently in breeding.

The introgressed segment surrounding Pch1 in
VPM-1 seems to have unfavourable effects for optimal
yield. A yield penalty is associated with Pch1 in the
absence of the pathogen (Worland et al. 1988). Substi-
tution of chromosome 7D of VPM-1 into several
adapted UK wheat varieties depressed yield by approx-
imately 6% (Law et al. 1988). Yield potential of
VPM-1 was 30% lower than that of the long-term
check �Nugains� on the basis of 16 site-years of tests in
Washington State (Jones et al. 1995). VPM-1 and some
of its derivatives possess a large segment of chromo-
some from the DV genome of Ae. ventricosa, and yield-
depressing genes are probably carried together with
eyespot resistance on this segment. Chao et al. (1989)
considered that the 7Dv segment in VPM-1 represented
most of the 7D chromosome because VPM-1 was dif-
ferent from the reference Ae. ventricosa accession they
used at only one RFLP locus (Xpsr129) and one iso-
zyme locus (alpha-Amy-D2), whereas it had the
Ae. ventricosa allele at 12 RFLP loci, including the
most distal at both ends of the chromosome and the
most proximal ones near the centromere, and at three
other loci (Pch1, Ep-D1 and Rc3). Similarly, according
to C-banding analysis, chromosome 7D appeared
entirely substituted by chromosome 7DV in four VPM
lines (Badaeva et al. 2008). Quite long ago, it was
shown that the deleterious linkages between low yield
and Pch1 can be broken (Worland and Law 1986; Law
et al. 1988). More recently, molecular results showed
that some cultivars carrying Pch1, for example �Coda�,
have a much shorter 7Dv segment than VPM-1
(Leonard et al. 2008).

The codominant endopeptidase marker Ep-D1 was
long considered useful to monitor the introgression of
Pch1 from VPM-1 to elite lines. However, the endo-
peptidase test is destructive for single seed and gener-
ally not sufficiently accurate when applied on an
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embryo-less half-grain basis. It is therefore usually
applied as a bulked progeny test, delaying selection by
one generation (Koebner and Summers 2003). An
improved method of assaying for the Ep-D1b marker
using roots from a single seedling was shown to be
accurate in predicting resistance (Santra et al. 2006).
This isoelectric focusing assay is not highly robust; it
is a technically demanding procedure and produces
toxic chemical compounds, and it is often difficult to
distinguish the Ep-D1b allele from certain orthologous
Ep-A1 and Ep-B1 alleles (Koebner et al. 1988). A
DNA-based marker for the presence of the eyespot
resistance gene is thus desirable for routine use in
selection programmes, because it would provide a sim-
ple, rapid and accurate assay for resistance at all
stages of plant growth and could be multiplexed with
DNA markers for other traits. Fortunately, several
SSR and STS markers have been identified that can be
used in this context.

Yield losses due to eyespot can still occur in culti-
vars with the resistance of �Cappelle-Desprez� (Hollins
et al. 1988). A significant loss in grain yield due to
eyespot was observed with VPM-1 once in 4 years
under favourable disease conditions (Murray and
Bruehl 1986). �Madsen� sustained significant yield
losses (average 15%) in five out 13 tests when inocu-
lated and non-inoculated plots were compared (Jones
et al. 1995), and the level of eyespot resistance varied
among material with Pch1 resistance gene (Lind 1999).
On the contrary, additional fungicide treatment for
eyespot control was predicted to be no longer rou-
tinely required in �Rendezvous� that combines at least
Pch1 and Pch2 (Hollins et al. 1988; Law et al. 1988;
Burt et al. 2010). Similarly, Doussinault and Douaire
(1978) observed that F2 families obtained by crossing
VPM and Cappelle-Desprez were slightly more eyespot
resistant than VPM itself at the adult stage and
obtained transgressive progenies in the F4 generation.
Two lines derived from these crosses showed signifi-
cantly higher resistance than VPM-1 a few years later
(Doussinault et al. 1983b). Allan and Roberts (1991)
also identified transgressive progenies for eyespot resis-
tance in a cross between VPM-1 ⁄Moisson 951 (resis-
tant with Pch1) and �Cerco�, with resistance at the
level of �Cappelle-Desprez�. Through the use of SSR
or STS markers flanking Pch2 in combination with
Pch1-linked loci like Xorw1, Xorw5 and Xorw6, mar-
ker-assisted selection of genotypes carrying Pch1 and
Pch2 could be successful and much easier than with
phenotypic screens. This should provide farmers with
cultivars having adequate eyespot resistance in the
majority of the years.

It has often been suggested that the combination of
Pch1 and the resistance of �Cappelle-Desprez� should
also sustain Pch1 durability, largely because of �Capp-
elle-Desprez� resistance durability. Whether the combi-
nation of Pch1 and Pch2 will be durable remains an
unanswered question, and for this reason, further
sources of resistance should be identified at the genetic
level.

Eyespot resistance is generally not complete, and
environmental effects on its expression can be large.
For these reasons, potentially valuable genotypes can
be lost if breeders are not able to identify resistant
genotypes. For example, Pch3 was mapped with an
assay performed with the GUS-transformed strain,
and this would not have been possible with visual dis-
ease ratings (Jones et al. 1995).
In the event of Pch1 resistance breakdown, new

sources of eyespot resistance genes will be needed
(Thiele et al. 2002) together with suitable genetic mark-
ers. Cultivars with improved eyespot resistance will then
be produced through introgression of the new genes into
new cultivars or through pyramiding of several resis-
tance genes. This probably will be possible only with
closely linked molecular markers for the various eyespot
resistance genes. Various accessions of T. tauschii,
T. monococcum, T. durum, T. dicoccoides and T. turgi-
dum were identified in the 1990s as potential sources of
eyespot resistance, but transfer of these putatively new
source genes into hexaploid wheat, identification and
mapping of the major genes represent a huge amount of
work that is still incomplete. Association mapping with
DArT (Semagn et al. 2006; Crossa et al. 2007), SNP
markers when available in sufficient density or other
marker techniques could help in localizing genes of
interest on the basis of currently available phenotypic
results, and identified markers could help in incorporat-
ing, pyramiding and stacking of resistance genes in com-
mercial wheat cultivars. Wheat is well served in the
development of genomic tools, which offers the promise
of improved genetic control of eyespot as well as a
broader genetic base to exploit in variety improvement.
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